Brief information about the project

Name of the project	AP09260371 «Understanding of the mechanism of modifying
	coatings influence of the sodium-ion battery cathode active
	material on the intercalation kinetics»
Relevance	The majority of cathode materials used and developed in metal-
	ion batteries represent a poorly conducting phase which prevents
	the charges transfer in electrochemical process. This leads to low
	power rates and decreased cycling efficiency. To reduce this
	effect, the coating of particles of electroactive material with a
	layer of an electronic conductor is widely used, which ensures
	charge delivery to any point on the surface. Sometimes it is not
	enough to solve the problem since the electrochemical
	transformation during intercalation also requires transfer of
	cation and transport charges inside the phase. In this regard,
	detailed examination of the nature of the processes during
	intercalation into poorly conducting materials is absolutely
	necessary to increase the efficiency of electrode materials'
	researches.
Purpose	The aim of this project is to reveal the influence of the properties
r r	of the modifying surface coating of poorly conductive cathode
	active materials on the processes of charge transfer through it
	during reversible intercalation of the material phase, also to
	develop a model of this process and its modeling.
Objectives	A comprehensive electrochemical study of the intercalation and
	deintercalation kinetics process will be carried out for different
	variants of the implementation of the particle coating and the
	characteristics of the conducting layer or the phase in contact
	with the material. Also, the modeling of these processes will be
	done. The data obtained in the experiment will be compared with
	the data obtained from modeling.
	To achieve this goal, the solution of 3 main tasks is required.
	The first is the synthesis, characterization, and study of the
	kinetic regularities of the intercalation-deintercalation of sodium
	in polysulfate and polyphosphate cathode materials without
	special methods of forming a conductive coating.
	The second is the selection of materials and the development of
	methods for applying electrically conductive coatings on
	particles of active material.
	At third we will the study of the kinetic correspondence of the
	At unit we will the study of the kinetic consequences of the formation of
	theoretical concepts of the process
Expected and achieved	At the culmination of the project a comprehensive model
results	detailing the intercalation deintercalation dynamics of acdium
	ions within poorly conductive polysulfate and polyphosphate
	cathode materials for sodium-ion batteries incorporating
	electrically conductive coatings has been unveiled The
	anticipated outcomes of this investigation illuminate the pivotal

	role played by conductive coatings in facilitating the sodium intercalation-deintercalation processes within cathode materials. This elucidation promises to address the longstanding challenge of insufficient conductivity inherent in polyanionic materials, thereby enhancing their capacitive performance, particularly under high charge-discharge currents. The innovation in developing competitive cathode materials for sodium-ion batteries is poised to drive down the overall cost of electrochemical energy storage and curb the reliance on lithium- based natural resources.
Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	 Malchik Fyodor Scopus Author ID - <u>57196147903</u>, ResearcherID: <u>D-5721-2015</u>, ORCID: <u>0000-0001-6381-0738</u> Kurbatov Andrey Scopus Author ID - <u>15519800600</u>, Researcher ID - <u>M-6232-2019</u>, ORCID - <u>0000-0003-1883-310X</u> Lepekhin Maxim, Scopus Author ID: <u>56436632000</u> Kokhmetova Saule Scopus Author ID - <u>56436662100</u>, Researcher ID - <u>CAF-3171-2022</u>, ORCID - <u>0000-0003-3932- 8612</u> Vysotskaya Alexandra Zhigalenok Yaroslav Scopus Author ID - <u>57862139800</u>, Researcher ID - <u>GSC-9737-2022</u>, ORCID - <u>0000-0003-1452- 1248</u> Kaupbay Olzhas - Scopus Author ID - , Researcher ID - <u>JCK- 9431-2023</u>, ORCID - <u>0000-0003-0553-4477</u>
List of publications with	
links to them	
Patents	

Figure 1 Representation of sodium intercalation in NaFe(SO4)2 and the formation of electrochemically active zones upon contact of the active material with electrically conductive particles of different nature and morphology

Figure 2 - model - distribution of concentration of the intercalated phase for different numbers of carbon contacts on the coating